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Abstract

In this lecture, based on [7, Section 4], we discuss possible interpretations
of the basic normal modal logic of categories, and related to this, some of its ax-
iomatic extensions, and time-permitting, the first-order correspondents on polarity-
based frames of these axioms and their relation with their classical counterparts,
both conceptual and technical.

1 Recap: from FCA to the logic of categories
As discussed in Lecture 3, the interpretive strategy supported by the polarity-based se-
mantics drops the interpretation of ∧ and ∨ as conjunction and disjunction in natural
language and stipulates that formulas do not denote sentences describing states of af-
fairs, but rather, denote objects with a different ontology, such as categories, concepts,
questions, theories, to which a truth value might not necessarily be applicable.

Polarities as abstract databases. The idea that lattices are the proper mathematical
environment for discussing “especially systems which are in any sense hierarchies”
goes back to Birkhoff [3]. Based on this idea, Wille [8] and his collaborators devel-
oped Formal Concept Analysis (FCA) as a theory in information science aimed at the
formal representation and analysis of conceptual structures, which has been applied to
a wide range of fields ranging from psychology, sociology, and linguistics to biology
and chemistry.

Building on philosophical insights developed by the school of Port-Royal [1], Wille
specified concepts in terms of their extension, i.e. the set of objects which exemplify the
given concept, and their intension, i.e. the set of attributes shared by the objects in the
extension of the given concept, and identified Birkhoff’s polarities P = (A,X , I) (aka
formal contexts cf. Lecture 1), as the appropriate mathematical environment in which
these ideas could be formally represented: indeed, as we discussed e.g. in Lecture 3,
a polarity P as above can be understood as an abstract representation of a database,
recording information about a given set A of objects (relevant to a given context or
situation), and a set X of relevant attributes or features. In this representation, the (in-
cidence) relation I ⊆ A×X encodes whether object a ∈ A has feature x ∈ X as aIx. The
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Galois-adjoint pair of maps (·)↑ : P(A)→P(X) and (·)↓ : P(X)→P(A) can be
understood as concept-generating maps: namely, as maps taking any set B of objects
to the intension B↑ which uniquely determines the formal concept (B↑↓,B↑) generated
by B, and any set Y of attributes to the extension Y ↓ which uniquely determines the
formal concept (Y ↓,Y ↓↑) generated by Y . Hence, the philosophical and cognitive in-
sight that concepts do not occur in isolation, but rather arise within a hierarchy of other
concepts, finds a very natural representation in the construction of the complete lat-
tice P+ and its natural order as the sub-concept relation. Indeed, a subconcept of a
given concept, understood as a more restrictive concept, will have a smaller extension
(i.e. fewer examples) and a larger intension (i.e. a larger set of requirements that objects
need to satisfy in order to count as examples of the given sub-concept). We saw that
this interpretation accounts for the failure of distributivity.

Propositional lattice logic as the basic logic of formal concepts. Imposing the FCA
interpretation of polarities discussed above on the polarity-based semantics of the ba-
sic (normal modal) logic L discussed in Lectures 3 and 4 yields an interpretation of
L -formulas as terms (i.e. names) denoting formal concepts. Starting from assign-
ments to proposition variables, any L -formula ϕ is then interpreted on a given polarity
P = (A,X , I) as a formal concept ([[ϕ]],([ϕ])) ∈ P+; specifically, for each object a ∈ A
and feature x ∈ X , the relations a 
 ϕ and x� ϕ can be respectively understood as ‘ob-
ject a is a member of (or exemplifies) concept ϕ’ and ‘feature x describes concept ϕ’,
in the sense that x is a required attribute of every example/member of ϕ . Accordingly,
this reading suggests that ϕ∧ψ can be understood as ‘the greatest (i.e. least restrictive)
common subconcept of concept ϕ and concept ψ’, i.e. the concept the extension of
which is the intersection of the extensions of ϕ and ψ . Similarly, ϕ ∨ψ is ‘the least
(i.e. most restrictive) common superconcept of concept ϕ and concept ψ’, i.e. the con-
cept the intension of which is the intersection of the intensions of ϕ and ψ; the constant
> can be understood as the most generic (or comprehensive) concept (i.e. the one that,
when interpreted in any given polarity P as above, allows all objects a∈ A as examples)
while ⊥ as the most restrictive (i.e. the one that, when interpreted in any given polarity
P as above, requires its examples to have all attributes x ∈ X). Finally, ϕ ` ψ can be
understood as the statement that ‘concept ϕ is a sub-concept of concept ψ’.

As mentioned above, this interpretation accounts for the failure of distributivity. In-
deed, objects in the extension of concept ϕ ∨ψ are only required to have all attributes
common to the intentions of concepts ϕ and ψ; this weaker requirement potentially al-
lows objects in [[ϕ ∨ψ]] which belong to neither [[ϕ]] nor to [[ψ]]. To illustrate this point
concretely, in lecture 3 we discussed the example of a polarity representing a ‘database’
of theatrical plays, and we motivated the failure of distributivity in the context of that
example.

2 From semantics to meaning
Lattice-based normal modal logic as an epistemic logic of formal concepts. So
far, we have discussed how the polarity-based semantics of the basic propositional
lattice logic L allows for an interpretation of L -formulas as names of formal concepts,
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and for a coherent interpretation of the meaning of all propositional lattice connectives
so that the failure of distributivity becomes essential to capturing ‘correct reasoning’
in the context of conceptual hierarchies. Next, based on [5, 6], we discuss how this
interpretation can be extended also to the modal connectives. For the sake of simplicity,
let us consider the ^-free fragment L� of the basic normal modal logic L introduced in
Lecture 4. In what follows, we will abuse notation and identify L� with its language.
As discussed in Lecture 4, this logic can be interpreted on relational structures F =
(P,R�) such that P= (A,X , I) is a polarity, and R� ⊆ A×X is an I-compatible relation
such that, for any assignment v : Prop→ P+, corresponding relations 
 ⊆ A×L� and
� ⊆ X×L� can be defined. In the case of �-formulas, this yields

a 
 �ϕ iff for all x ∈ X , if x� ϕ then aR�x
x� �ϕ iff for all a ∈ A, if a 
 �ϕ then aIx.

Building on the understanding of polarities as abstract representation of databases,
the relational structures F= (P,R�) can be understood as (abstract representations of)
databases which not only encode objective information about objects and their features
(by way of the incidence relation I of P), but also encode subjective information re-
garding whether given objects have given attributes according to a given agent; this
understanding allows us to read aR�x as ‘object a has attribute x according to agent
i. Of course, this interpretation can be further specialized so as to represent agents’
knowledge (aR�x iff ‘agent i knows that object a has attribute x’), beliefs (aR�x iff
‘agent i believes that object a has attribute x’), perceptions (aR�x iff ‘agent i sees that
object a has attribute x’), evidential reasoning (aR�x iff ‘agent i has evidence that ob-
ject a has attribute x’), and so on. Each of these epistemic interpretations will give rise
to a different epistemic reading of �ϕ as ‘concept ϕ according to the given agent i’:
namely, ‘concept ϕ as is known/believed/perceived/experienced by agent i’. Also in
the case of L�-formulas, for every object a and attribute x, the symbols a 
 �ϕ and
x � �ϕ can be understood as ‘object a is a member/example of �ϕ’ and ‘attribute x
describes �ϕ’, respectively. Interestingly, the condition that

a 
 �ϕ iff for all x ∈ X , if x� ϕ then aR�x

can then be informally understood as saying that any object a is a member/example
of concept ϕ according to agent i if and only if agent i attributes to a all the defining
features of concept ϕ . This reading is indeed coherent with our informal understanding
of which objects should count as members of ‘concept ϕ according to agent i’.

Exercise 1. Propose an informal understanding, along the lines just discussed, of the
following interpretation clauses:

1. M,x� �ϕ iff for all a ∈ A, ifM,a 
 �ϕ , then aIx.

2. M,a 
 ^ϕ iff for all x ∈ X, ifM,x� ^ϕ , then aIx

3. M,x� ^ϕ iff for all a ∈ A, ifM,a 
 ϕ , then xR^a.

Finally, one would also expect that the different variants of epistemic interpreta-
tions would satisfy different axioms; for instance, if �ϕ is interpreted as ‘concept ϕ
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as is known by agent i’, one would ask whether there is some L�-axioms which would
encode the counterparts, in the lattice-based setting, of well known classical epistemic
principles such as the factivity condition which distinguishes knowledge from belief,
and what would this condition look like in the context of polarity-based relational struc-
tures. As is well known, in the setting of classical normal modal logic, factivity is
formalized as the modal axiom �ϕ → ϕ (which reads ‘if agent i knows that ϕ , then ϕ

is indeed the case’). Moreover, this is a Sahlqvist formula and corresponds on Kripke
frames (W,R) to R being reflexive or, equivalently, to ∆⊆ R. Since L� is based on se-
quents and not on formulas, the closest approximation to the classical formula �ϕ→ ϕ

is the L�-sequent �ϕ ` ϕ , which turns out (cf. [4, Proposition 4.3]) to correspond on
polarity-based structures F as above to the first-order condition R� ⊆ I. That is, for
every object a and feature x, if aR�x (i.e. if a is endowed with x according to agent i)
then aIx (i.e. object a indeed has feature x).

Exercise 2. Prove that for every polarity-based frame F= (P,R�),

F |= �p ` p iff ∀a∀x(aR�x⇒ aIx).

Hint: from right to left, fix a valuation V on P+, and show that, for every a ∈ A, if
a ∈ [[�p]]V then a ∈ [[p]]V ; for the converse direction, assume that aR�x but not aIx for
some a ∈ A and x ∈ X, and find an assignment V on P+ such that F 6|= �p ` p.

This condition is arguably an appropriate rendering of factivity in the setting of
polarity-based relational structures, which suggests that more modal epistemic princi-
ples might retain their intended interpretation even under a substantial generalization
step such as the one from the classical (i.e. Boolean) to the lattice-based setting. Indeed,
this is also the case for positive introspection, which in the language of classical modal
logic is formalized as �ϕ → ��ϕ (which reads ‘if agent i knows that ϕ , then agent
i knows that she knows ϕ’). As is well known, this axiom is a Sahlqvist formula the
first-order correspondent of which on Kripke frames (W,R) is the condition R◦R⊆ R,
concisely expressing that the relation R is transitive. Again, the L�-sequent �ϕ ` ��ϕ

turns out (cf. [4, Proposition 4.3]) to correspond on polarity-based structures F to the
first-order condition1 that reads: for every object a and feature x, if agent i thinks that
a has feature x, then (agent i must recognize a as an example of what i understands
x-objects to be, i.e. as a member of i’s understanding of the formal concept generated
by feature x, and hence) agent i must attribute to a also all the features that, according
to i, are shared by all x-objects.

Exercise 3. Prove that for every polarity-based frame F= (P,R�),

F |= �p ` ��p iff R� ⊆ R� ;I R�.

Additional details and hints are collected in the handout.

As in the case of factivity, one can argue that this condition is an appropriate render-
ing of the principle of positive introspection in the setting of polarity-based relational

1With the aid of the notation ;I for relational composition modulo the polarity relation I (cf. [4, Section
3.4] for the full definition) this condition can be succinctly captured as R� ⊆ R� ;I R�.
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structures, since it is clearly an internal coherence requirement which seeks to justify
any given attribution of a feature to an object by linking it to the wider context of
those (other) features that are consequences of the given attribution. Lastly, the notion
of omniscience, stipulating that the agent knows everything that is the case, is classi-
cally captured by the axiom p→ �p corresponding on Kripke frames to the first-order
condition R⊆ ∆. On polarity-based structures F, the L�-sequent ϕ ` �ϕ (cf. [4, Propo-
sition 4.3]) corresponds to the first-order condition I ⊆ R�, indicating that, whenever
an object has a feature, the agent knows this.

Exercise 4. Prove that for every polarity-based frame F= (P,R�),

F |= p ` �p iff ∀a∀x(aIx⇒ aR�x).

Hint: follow a similar strategy as Exercise 1.

Typicality formalized via ‘common knowledge’ In Lecture 1, we discussed that
one of the desiderata of the logical theory of categorization is to be able to integrate
seemingly dichotomous views of what categories are and do. One of the most important
such dichotomous views is the one between the classical and the prototype view on
categories. We proposed that the reconciliation should be effected by endowing the
FCA-based framework with extra tools for encoding a notion of typicality.

The main insight guiding our proposal is that typicality is the outcome of an inter-
subjective process, in which agents do not only consider what they themselves would
think as a typical member of a certain category, but would also take into account which
objects, in their opinion, other agents would think of as typical members, and so on.
Therefore, formalizing typicality requires an explicit formalization of this intersubjec-
tive process.

To this effect, in [5, 6], an expansion LC of L was introduced with a common
knowledge-type operator C. Given a denumerable set of proposition variables Prop
and a finite set Ag of agents (the elements of which are i ∈ Ag), the language LC of the
epistemic logic of categories with ‘common knowledge’ is:

ϕ :=⊥ | > | p | ϕ ∧ϕ | ϕ ∨ϕ | �iϕ |C (ϕ) .

C-formulas are interpreted in models as follows:

M,a 
C (ϕ) iff for all x ∈ X , ifM,x� ϕ , then aRCx
M,x�C (ϕ) iff for all a ∈ A, ifM,a 
C (ϕ), then aIx,

where RC ⊆ A×X is defined as RC =
⋂

s∈S Rs, and Rs ⊆ A×X is the relation associated
with the modal operator �s :=�i1 · · ·�in for any element s = i1 · · · in in the set S of finite
sequences of elements of Ag.

The basic logic of categories with ‘common knowledge’ is a set LC of sequents
ϕ ` ψ , with ϕ,ψ ∈LC, which contains the axioms and is closed under the rules of L,
and in addition contains the following axioms:

> `C (>) C (p)∧C (q) `C (p∧q) C (p) `
∧
{�i p∧�iC (p) | i ∈ Ag}
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and is closed under the following inference rules:

ϕ ` ψ

C (ϕ) `C (ψ)

χ `
∧

i∈Ag�iϕ {χ ` �iχ | i ∈ Ag}
χ `C (ϕ)

The interpretation of C-formulas on models indicates that, for every category ϕ ,
the members of C(ϕ) are those objects which are members of ϕ according to every
agent, and moreover, according to every agent, are attributed membership in ϕ by
every (other) agent, and so on. This provides justification for our proposal to regard the
members of C(ϕ) as the (proto)typical members of ϕ . The main feature of this proposal
is that it is explicitly based on the agents’ viewpoints. This feature is compatible with
empirical methodologies adopted to establish graded membership (cf. [?]). Notice that
there is a hierarchy of reasons why a given object fails to be a typical member of ϕ ,
the most severe being that some agents do not recognize its membership in ϕ , followed
by some agents not recognizing that any other agent would recognize it as a member
of ϕ , and so on. This observation provides a purely qualitative route to encode the
gradedness of (the recognition of) category-membership (e.g. represented in a ‘hybrid’
language with (co-)nominal variables for designated objects a, b and features x). That
is, two non-typical objects a and b can be compared in terms of the minimum number
of ‘epistemic iterations’ needed for their typicality test to fail, so that b is more atypical
than a if fewer rounds are needed for b than for a. This definition can be readily adapted
so as to say that b is a more atypical member of ψ than a is of ϕ .

Lattice-based normal modal logic as the logic of rough concepts. As discussed
above, the interpretation of L� as an epistemic logic of formal concepts, facilitated
by the polarity-based semantics, extends coherently from the meaning of the defining
clauses of 
 and � relative to �-formulas, all the way to the preservation of the mean-
ing of well known epistemic principles. However, the epistemic interpretation is not
the only possible one; in what follows, we give pointers to another family of possible
interpretations, proposed in [4], where polarity-based L -frames are used to generalize
Rough Set Theory (RST) [11] to the setting of rough concepts. The basic models in
RST are pairs (X ,R), called approximation spaces, with X a non-empty set and R an
equivalence relation on X . The set X is to be thought of as the domain of discourse
and R as an indiscernibility relation. The equivalence classes of R establish the granu-
larity of the discourse by setting the limits to the distinctions that can be drawn. This
granularity is captured algebraically by the upper and lower approximation operators
arising from approximation spaces, which, when applied to any given subset T ⊆ X ,
encode the available information about T as follows. The lower approximation of T
of T consists of those elements whose R-equivalence classes are contained in T , while
the upper approximation of T consists of those elements whose R-equivalence classes
have non-empty intersection with T . In other words,

T :=
⋃
{R[z] | z ∈ T and R[z]⊆ T} and T :=

⋃
{R[z] | z ∈ T}.

The lower approximation T can be thought of as the set of all objects that are definitely
in T , while the upper approximation T consists of those objects that are possibly in T .
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As the reader would have remarked, an approximation space is nothing but a frame
for the modal logic S5, and the lower and upper approximation of T ⊆ S are obtained
by applying the interior and closure operators given by the S5 box and diamond oper-
ators associated with the indiscernibility relation R, respectively. This connection with
modal logic has indeed not gone unnoticed in the literature and has been elaborated in
e.g. [9], [2] and [10].

In [4], conceptual approximation spaces were defined as polarity-based L -frames
F = (P,R�,R^) such that P = (A,X , I) is a polarity, and R� ⊆ A×X and R^ ⊆ X ×
A are I-compatible relations verifying the first-order conditions corresponding to the
following modal axioms: �ϕ ` ^ϕ (seriality); �ϕ ` ϕ and ϕ ` ^ϕ (reflexivity); �ϕ `
��ϕ and ^^ϕ ` ^ϕ (transitivity); ϕ ` �^ϕ and ^�ϕ ` ϕ (symmetry).

Taken together, these conditions guarantee that F+ := (P, [R�],〈R^〉) is a complete
lattice-based algebra such that [R�] and 〈R^〉 are an interior and a closure operator
respectively; moreover, 〈R^〉 is the left adjoint of [R�] (i.e. aR�x iff xR^a for every
a ∈ A and x ∈ X).

Under the usual interpretation of P = (A,X , I) as a database, one possible way to
understand aR�x or equivalently xR^a is ‘there is evidence that object a has feature
x’, or ‘object a demonstrably has feature x’ (cf. [4, Section 5.1]). This intuitive under-
standing makes it plausible to assume that R� ⊆ I. Recall that 
 for �-formulas and of
� for ^-formulas are defined as follows:

a 
 �ϕ iff for all x ∈ X , if x� ϕ then aR�x
x� ^ϕ iff for all a ∈ A, if a 
 ϕ then xR^a.

Under the interpretation discussed above, these clauses can be understood as saying
that �ϕ is the concept the examples/members of which are exactly those objects that
demonstrably have all the features shared by ϕ-objects, and that ^ϕ is the concept
described by the features which all ϕ-objects demonstrably have. Hence, �ϕ can be
understood as the (sub)concept of the certified members of ϕ , while ^ϕ as the (super)
concept of the potential members of ϕ .

Thus, under the interpretation of R� and R^ proposed above, the polarity-based
semantics of L supports the understanding of �ϕ and ^ϕ as the lower and upper
approximations of concept ϕ , respectively. Notice that, while in approximation spaces
the relation R relates indiscernible states, and thus directly encodes the extent of our
ignorance, in the setting of conceptual approximation spaces, R� (or equivalently R^)
directly encode the (possibly partial) extent of our knowledge or information.

Exercise 5. Prove that, for any enriched formal context F= (P,R�,R^):

1. F |= �ϕ ` ^ϕ iff R� ;R� ⊆ I.

2. F |= �ϕ ` ϕ iff R� ⊆ I.

3. F |= ϕ ` ^ϕ iff R� ⊆ I.

4. F |= �ϕ ` ��ϕ iff R� ⊆ R� ;R�.

5. F |= ^^ϕ ` ^ϕ iff R^ ⊆ R^ ;R^.
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6. F |= ϕ ` �^ϕ iff R^ ⊆ R_.

7. F |= ^�ϕ ` ϕ iff R_ ⊆ R^.

8. F |= ϕ ` �ϕ iff I ⊆ R�.

9. F |= ^ϕ ` ϕ iff I ⊆ R�.

10. F |= ��ϕ ` �ϕ iff R� ;R� ⊆ R�.

11. F |= ^ϕ ` ^^ϕ iff R^ ;R^ ⊆ R^.

12. F |= ^ϕ ` �ϕ iff I ⊆ R�;R�.

From concepts to other ontologies. In [4], other more specific interpretations are
proposed concerning situations which span from the analysis of text databases to med-
ical diagnoses and the analysis of markets. Accordingly, in each of these situations, �ϕ

and ^ϕ can be given more specific interpretations as lower and upper approximations
of concepts or categories or relevant clusters.

For instance (cf. [4, Section 5.4,] modified), text databases can be modelled as
polarity-based LPML-structures F= (P,R�,R^) such that P= (A,X , I) with A being a
set of documents, X a set of words, and aIx being understood as ‘document a has word
x as a keyword’. Formal concepts arising from such an F can be understood as themes
or topics, intensionally described by Galois-stable sets of (key)words. In this situation,
one of the many possible interpretations of aR�x or equivalently xR^a is ‘document a
has word x as its first or second keyword’, which again makes it plausible to assume
that R� ⊆ I.

As another example (cf. [4, Section 5.5] modified), let P = (A,X , I) represent a
hospital, where A is the set of patients, X is the set of symptoms, and aIx iff “patient
a has symptom x”. Concepts arising from this representation are syndromes, inten-
sionally described by Galois-stable sets of symptoms. In this situation, let aR�x, or
equivalently xR^a, iff ‘a has been tested for symptom x with positive outcome’.

As a third example (cf. [4, Section 5.8] modified), let P = (A,X , I) where A is
the set of consumers, X is the set of market-products, and aIx iff ‘consumer a buys
product x’. Concepts arising from this representation are consumer segments, inten-
sionally described by Galois-stable sets of market-products. In this situation, let aR�x,
or equivalently xR^a, iff ‘a buys x from a certain producer i’. Then �ϕ denotes the
market share of producer i in consumer segment ϕ .

As a fourth example, let P = (A,X , I) where A is the set of empirical hypothe-
ses, X is the set of variables, and aIx iff ‘hypothesis a is formulated in terms of vari-
able x’. Concepts arising from this representation are empirical theories, extensionally
described by Galois-stable sets of hypotheses and intensionally described by Galois-
stable sets of variables. In this situation, let aR�x, or equivalently xR^a, iff ‘x is a
dependent variable for hypothesis a’. Then, if x = (x↓,x↓↑) denotes the formal concept
generated by x, the extension of �x contains all hypotheses that compete with each
other.

Finally, let P= (A,X , I) represent a decision-making situation in which A is the set
of decision-makers, X is the set of issues, and aIx iff ‘agent a finds issue x relevant’.
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Concepts arising from this representation are interrogative agendas, extensionally de-
scribed by Galois-stable coalitions and intensionally described by Galois-stable sets
of issues. In this situation, let aR�x, or equivalently xR^a, iff ‘agent a regards x as a
positive issue’. For example, if A is the set of the members of a hiring committee and
X is the set of the features of potential applicants, agent a could regard “the candidate
obtained their PhD recently” as a desirable characteristic, i.e. a positive issue, while
other agents might prefer a more experienced candidate and therefore not regard this
as positive. This would mean that R� ⊆ I and that, extensionally, �ϕ would be the
coalition of all agents who are positive towards all issues on interrogative agenda ϕ .
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