Logical foundations of categorization theory Handout 1

Fei Liang and Alessandra Palmigiano

July 26, 2021

1 Preliminaries

Definition 1 (Partial order). *Let P be a set. A* partial order *on P is a binary relation* \leq *on P such that, for all x,y,z* \in *P*,

- (a) $x \le x$ (reflexive);
- (b) if $x \le y$ and $y \le x$ then x = y (antisymmetric);
- (c) if $x \le y$ and $y \le z$ then $x \le z$ (transitive).

If \leq is a partial order on P, we call (P, \leq) a partially ordered set (poset).

Definition 2 (Closure operator). *If* (P, \leq) *is a partially ordered set, a map* $c : P \rightarrow P$ *is a* closure operator *on* (P, \leq) *, if for all* $x, y \in P$,

- (a) $x \le c(x)$ (inflationary);
- (b) if $x \le y$ then $c(x) \le c(y)$ (monotone);
- (c) c(c(x)) = c(x) (idempotent).

If c is a closure operator on (P, \leq) , let $\mathscr{C}_c := \{x \in P \mid x = c(x)\}.$

2 Examples and Exercises

Topological Spaces

Definition 3. A topological space is a tuple (X, τ) such that X is a set and τ is a collection of subsets of X, called open sets, such that:

- (a) \emptyset , $X \in \tau$;
- (b) τ is closed under finite intersection and arbitrary unions.

Exercise 1. Prove that, for every topological space (X, τ) , the map $c : \mathscr{P}(X) \to \mathscr{P}(X)$ defined by the assignment $Y \mapsto \bigcap \{C \in \mathscr{C}_{\tau} \mid Y \subseteq C\}$ is a closure operator on $(\mathscr{P}(X), \subseteq)$, where $\mathscr{C}_{\tau} := \{A^c \mid A \in \tau\}$ and A^c is the relative complement of A with respect to X.

Logical Systems

Definition 4. The Polish school in logic defines a logical system as a tuple $\mathscr{S} = (\mathbf{Fm}, \vdash)$ such that \mathbf{Fm} is the algebra of \mathscr{L} -formulas over a given set Φ of propositional variables for a given algebraic signature \mathscr{L} , and \vdash is a consequence relation on \mathbf{Fm} , i.e. $\vdash \subseteq \mathscr{P}(\mathbf{Fm}) \times \mathbf{Fm}$ such that for all $\varphi, \psi \in \mathbf{Fm}$ and all $\Delta, \Gamma \subseteq \mathbf{Fm}$:

- (a) if $\varphi \in \Gamma$, then $\Gamma \vdash \varphi$;
- (b) if $\Gamma \vdash \varphi$ and $\Gamma \subseteq \Delta$, then $\Delta \vdash \varphi$;
- (c) if $\Gamma \vdash \psi$ for every $\psi \in \Delta$ and $\Delta \vdash \varphi$, then $\Gamma \vdash \varphi$.

Exercise 2. For any logical system $\mathscr S$ as above, prove that the map $c_{\vdash}: \mathscr P(Fm) \to \mathscr P(Fm)$ defined by the assignment $\Gamma \mapsto \{\phi \mid \Gamma \vdash \phi\}$ is a closure operator on $(\mathscr P(Fm), \subseteq)$.

Galois Connections

Definition 5 (Galois connection). *Let* (P, \leq) *and* (Q, \preceq) *be partial orders. A* Galois connection *is a pair of maps* $\triangleright : P \rightarrow Q$ *and* $\triangleright : Q \rightarrow P$ *such that, for every* $x \in P$ *and every* $y \in Q$,

$$x \leq \triangleright y$$
 iff $y \leq \triangleright x$.

Exercise 3. Prove that, in any Galois connection (cf. Definition 5),

- 1. $x \leq \triangleright x$ and $y \leq \triangleright \triangleright y$;
- 2. $x \le x'$ implies $\triangleright x' \le \triangleright x$, and $y \le y'$ implies $\triangleright y' \le \triangleright y$;
- 3. $\triangleright \triangleright x = \triangleright x \text{ and } \triangleright \triangleright y = \triangleright y$.

Deduce from the previous items that for every Galois connection as above, $\triangleright \triangleright$ is a closure operator on (P, \leq) and $\triangleright \triangleright$ is a closure operator on (Q, \preceq) .

Polarities

Definition 6. A polarity or formal context is a triple $\mathbb{P} = (A, X, I)$ such that A and X are sets and $I \subseteq A \times X$. Every polarity induces the pair of maps

$$(\cdot)^{\uparrow}: \mathscr{P}(A) \to \mathscr{P}(X) \quad and \quad (\cdot)^{\downarrow}: \mathscr{P}(X) \to \mathscr{P}(A),$$

respectively defined by the assignments

$$B^{\uparrow} := \{ x \in X \mid \forall a (a \in B \Rightarrow aIx) \}$$
 and $Y^{\downarrow} := \{ a \in A \mid \forall x (x \in Y \Rightarrow aIx) \}.$

Exercise 4. Show that

1. the map \uparrow : $\mathscr{P}(A) \to \mathscr{P}(X)$ and the map \downarrow : $\mathscr{P}(X) \to \mathscr{P}(A)$ form a Galois connection, that is, for every $B \subseteq A$ and every $Y \subseteq X$,

$$B \subseteq Y^{\downarrow}$$
 iff $Y \subseteq B^{\uparrow}$

2. deduce that $(\cdot)^{\uparrow\downarrow}: \mathcal{P}(A) \to \mathcal{P}(A)$ and $(\cdot)^{\downarrow\uparrow}: \mathcal{P}(X) \to \mathcal{P}(X)$ are closure operators on $(\mathcal{P}(A), \subseteq)$ and $(\mathcal{P}(X), \subseteq)$ respectively.¹

¹When $B = \{a\}$ (resp. $Y = \{x\}$) we write $a^{\uparrow\downarrow}$ for $\{a\}^{\uparrow\downarrow}$ (resp. $x^{\downarrow\uparrow}$ for $\{x\}^{\downarrow\uparrow}$).